产品列表 / products
衡量指示剂变色阳离子交换树脂的质量指标
变色数脂可以用来监测阳床或阴床出水,在阳床或阴床临近失效时及时指示失效点,是在线监测仪表直观和有效的补充。具有稳定可靠、使用简便、不污染水质的优点。
变色阳树脂是一种带有指示剂的阳离子交换树脂,出厂型为氢型,通过变色阳树脂的水如果含有Na+、K+、Ca2+、Mg2+、Fe2+等各种阳离子时,即与树脂携带的H+发生交换,树脂层开始失效,失效层颜色明显改变,指示水中有阳离子泄露。H+型时为墨绿色,Na+型时为玫瑰红色,产品色差十分明显。同时还具有良好的交换容量和物理稳定性。
变色阳树脂一般用在火电厂凝结水、除氧器、省煤器、主蒸汽等H+电导仪前,将水中带入的游离氨除去,并将所有的阳离子全部转化为H+离子,避免了Ca2+、Mg2+、Na+泄漏进入凝结水而电导仪显示值反倒降低的现象发生。
变色阳树脂与H+电导仪联合使用,用于监测凝汽器泄漏量是否超标,决定凝结水是否需要处理,监测给水、蒸汽水质品质是否满足标准要求。是火力发电厂化学监督重要和为倚重的化学表计。
变色树脂使用范围:监测和控制给水、凝结水和蒸汽的氢电导率,是保证水汽质量,控制火电厂水汽系统腐蚀结垢的重要手段之一。
由于水汽中氨的浓度、取样流速经常变化,加上机组启停等原因,难以判断H型交换柱何时失效。H型交换柱失效初期,由于少量铵离子穿透,使氢电导率测量值偏低;当H型交换柱失效,大量铵离子透过,氢电导率测量值又偏高。因此,当交换柱失效后引起氢电导率变化时,难以及时判断是水质恶化还是交换柱失效。目前国外采取的解决办法是采用变色阳离子交换树脂,失效层与未失效层颜色不同,可以在H型交换柱失效前及时进行再生处理,可以及时发现水质恶化问题并及时采取解决措施。
变色树脂使用方法:
新购买的变色树脂是未处理的Na型树脂,必须经过以下方式处理才可以使用:
(1)将新树脂放入容器中,以除盐水清洗2~3遍,至水清澈;如果树脂变干,则清洗前需要加入10NaCl溶液浸泡2小时,以防止树脂因急剧膨胀而破裂。
(2)将清洗干净的树脂装入实际交换柱中,以不少于10倍树脂体积的5HCl再生液动态逆流再生(与交换柱运行水流方向相反),再生流速控制3m/h~5m/h,保证再生液与树脂接触时间不小于30min;
(3)再生液进完后以除盐水按交换柱运行水流方向大流量冲洗交换柱(冲洗流速10m/h~20m/h),冲洗时间不低于12h;
(4)再生完毕、清洗干净的氢交换柱可装入实际系统进行氢电导率的测定。
(5)失效的变色树脂氢型交换柱可直接进行再生处理,再生步骤同(2)~(4)。
变色树脂的储存:需要长期储存的树脂,应再生成氢型树脂后储存。
衡量指示剂变色阳离子交换树脂的质量指标离子交换树脂的性能质量对水处理效率、再生周期及再生剂的消耗量有很大影响,一般可依据以下几项指标,衡量离子交树脂的性能质量。
1、树脂的选择性与选择系数树脂对不同的离子具有不同的亲和能力,对亲和能力强的离子优先选择,和它结合力强使之不易泄。但由于结合牢固,再生时,该离子置换下来就很困难。树脂对离子亲和能力的差异,取决于两个方面:一是树脂自身的性能,尤其是自身的交联度。交联度越大,对离子的选择性就越大,其亲和能力就越强。反之,就越弱。二是与溶液中离子的性质、组分和浓度有关。在常温和低浓度溶液中,各种树脂对不同离子的选择性大致有如下规律。
离子交换树脂
①强酸阳离子交换树脂这种树脂对溶液中价数越高的离子,亲和能力越强。在同价数离子中,原子序数越大,亲和能力就越强,其选择性顺序如下:Fe+>Co+>Al+>Ca+>Mg+>Ag+>K+>Na+>Li+。
②弱酸阳离子交换树脂这种树脂对氢离子选择能力特别强,对多价离子的选择能力也优于低价离子,其选择性顺序如下:H+>Fe+>Al+>Ca2+>Mg2+>K+>Na+>Li+。
③强碱阴离子交换树脂一般而言,强碱阴树脂的选择性是随溶液中阴离子的价数增加而增大,其亲和能力规律如下:cr2O->sOi->CrO>NOf>cl->OH->F->HcOf。
④弱碱阴离子交换树脂弱碱阴树脂对离子的选择规律,取决于溶液中的离子价态、水合离子半径和离子结构。但弱碱阴树脂对OH一具有更强的选择性。弱碱阴树脂对离子的选择顺序如下:OH->cr2O;->soi->NOf>cl->tC。离子的选择性除与其本身及树脂有关外,还与温度、浓度及pH值等因素有关。上述树脂的选择规律,只适于低浓度的水溶液中。在高浓度水溶液中(一般离子浓度在3mol/L以上),情况就比较复杂,甚至会出现相反的选择顺序。树脂的再生就是利用高浓度的酸、碱、盐来实现的。
离子交换树脂
2、含水率。由于离子交换树脂的亲水性,因此它总含有一定数量的水化水(或称化合水分),称为含水率。含水率通常以克湿树脂(去除表面水分后)所含水分百分数来表示(一般在5左右),也可折算成相当于ÿ克干树脂的百分数表示。
3、密度。树脂密度是设计交换柱、确定反冲洗强度的重要指标,也是影响树脂分层的主要因素。树脂密度分为干密度和湿密度。干密度是在温度105℃真空干燥后的密度。湿密度又分为湿真密度和湿视密度。
①湿真密度。指树脂在水中充分膨胀后的质量与真体积(不包括颗粒孔隙体积)之比(g/mL),一般为1.04~1.30g/mL。不同类型树脂,湿真密度不同。即使同一类型的阳树脂或阴树脂,由于所含交换离子种类不同,湿真密度大小也不相同。其大小顺序
如下:阳树脂R—H<r—nh4<r—ca<r—na< p="">与阴树脂R—OH<r—cl<r—c03<r—s04< p="">。
②湿视密度湿视密度又称堆积密度,是指树脂在水中充分溶胀后,单λ体积树脂所具有的质量,该值一般为0.60~0.85g/mI,。湿视密度可用来计算离子交换柱内填充树脂的所需量。
离子交换树脂
4、离子交换容量 离子交换容量是定量表示树脂交换能力的指标,可用质量法和容量法表示。质量法是指单λ质量的干树脂中离子交换基团数量,用mmol/g干树脂或mol/g干树脂来表示;容积法是指单λ体积的湿树脂中离子交换基团的数量,用mol/L湿树脂或mol/m3湿树脂表示。由于树脂一般在湿态下使用,因此常用的是容积法。在树脂结构中,交换功能基越多,可交换的离子就越多,交换容量就越大。交换容量在不同条件下具有不同的表达形式,其数值也不相同。全交换容量,是指ÿ单λ量的树脂(g或L,在105℃干燥至质量恒定)能够交换的离子总量。工作交换容量,是指在某一的工作条件下,树脂实际上所能表现出来的离子交换的总量,工作交换容量一般小于全交换容量。由于运行条件不同,测得的工作交换容量也就不同。影响工作交换容量的因素很多,例如水的离子浓度、交换终点的控制指标、树脂层高度、交换速度、树脂粒度及交换基团形式等。穿透交换容量,是指在使用中的离子交换柱出流液中,一出现要除去的某种离子时,树脂所交换的离子数量。在纯水的制备和废水处理过程中,这是一项控制指标。